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1 Motivation

1.1 Full Waveform Inversion (FWI)

Full Waveform Inversion (FWI) is an advanced inverse-problem technique widely used in geophysics
for accurately determining subsurface properties, primarily the velocity field w(z). It achieves this by
numerically matching simulated seismic waveforms to observed seismic data. The procedure involves
a forward problem coupled with an inverse problem, iteratively.

1.1.1 Forward Problem

Given an initial velocity u(z), FWI starts with a forward modeling step which involves solving the
acoustic wave equation in a spatial domain Q C R%:
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V2p(z,t) — = s(z, 1), z€Q,t>0, (1)

where

e p(x,t) is called a pressure wavefield at position = and time ¢.
e u(x) is the velocity which is a function of .

e s(x,t) is a known seismic source term.

An appropriate boundary condition can be chosen, whereas the initial condition is typically:

p(x,0) = %(m,O) =0, x €. (2)

1.1.2 Inverse Problem

The velocity u(z) describes the speed with which the wave propagates through a certain medium (e.g,
underground), and this enables seismic methods to produce high-resolution, structured images of the
medium. Unfortunately, we do not have the velocity except some observed pressure wavefields pops (z, t)
at some finite locations in €. This leads to an inverse problem, for which FWI seeks to minimize a
functional J(p(w)) that measures the difference between the observed wavefield and some simulated
wavefield p(z,t) obtained by solving equation 1 numerically.
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where,

e 1, are the locations in the domain of the observed wavefields,

e T is the total time.

The inverse method uses a gradient-based optimization method to obtain the velocity u(x), given
a trial velocity ug(z),
uk1(7) = up () — VoI (p(ur)) (z), (4)
where oy, is the step length and V,, is the derivative with respect to w.



1.1.3 Algorithm for FWI

e Initialize a trial ug(x).

e Solve wave equation to compute wavefields p(z, t;uy).

Evaluate the functional J(p(uy)).

Calculate the gradient V,J (p(ug)).

Update the velocity using equation (4).

1.1.4 Challenges of FWI

FWI faces several critical challenges in obtaining the velocity u(x) that minimizes (4):

e Nonlinearity and non-convexity: The inversion process may converge to local minima, lim-
iting the accuracy of reconstructed velocities.

e Sensitivity to initial conditions: The quality of the initial velocity ug greatly impacts con-
vergence and accuracy.

e Computational expense: Solving PDEs in every iteration makes the inversion computationally
intensive.

e Cycle-skipping: Incorrect phase alignment between predicted and observed waveforms may
prevent convergence to the global optimum.

1.2 Machine Learning for FWI

Scientific machine learning (SciML) has emerged as a powerful approach in computational science
and engineering, primarily driven by advances in deep learning [1]. These methods excel at captur-
ing complex mappings between high-dimensional spaces, which makes them particularly suitable for
addressing challenging computational problems such as those encountered in FWI. SciML method-
ologies can be broadly categorized into two primary frameworks: function-to-function mappings (e.g,
Physics-Informed Neural Networks (PINNs) [2]) and operator mappings (e.g, neural operators [3, 4]).

Neural operators are especially compelling due to their capability to learn PDE solution operators,
directly mapping input functions—such as initial conditions, boundary conditions, or forcing terms—to
PDE solutions. Formally, these operators approximate a mapping G defined as:

G: XY,

where X and Y are two infinite-dimensional Banach spaces of functions and y = G(v) corresponding
to the PDE solution.

In FWI, traditional methods rely heavily on repeatedly solving partial differential equations (PDEs),
which is a computationally expensive process. Machine learning techniques, however, offer promising
alternatives by serving as surrogate models. Specifically, they can directly learn mappings between
wavefields p and their corresponding velocity models u. Once trained, these surrogate models signifi-
cantly reduce computational costs by predicting velocities rapidly, circumventing the repeated, costly
numerical PDE solvers. Additionally, a critical challenge in traditional FWI is the sensitivity to the
initial velocity model ug. Surrogate models trained via machine learning can aid in addressing this issue
by providing informed initial velocity models. Improved initial estimates facilitate faster convergence
and enhance the overall efficiency of inversion procedures.

Several machine learning architectures have been applied in FWI, including Convolutional Neu-
ral Network (CNN) with an encoder-decoder structure [5], Generative Adversarial Network (GAN)
with modified encoder-decoder structure [6], and multiple neural operator variants such as Fourier-
DeepONet [7], Inversion-DeepONet [8], En-DeepONet [9], among others [10, 11].

Despite their advantages, current SciML approaches exhibit significant limitations. Primarily,
they are characterized by their black-box nature, limiting physical interpretability. Additionally, their
heavy reliance on training data restricts their generalizability to new geological scenarios. Although



hybrid-data and physics-informed approaches have been proposed [12, 13, 14], they often remain com-
putationally expensive and sometimes perform worse than purely data-driven methods [15].

Given the above, this research project aims to address these critical limitations through the follow-
ing objectives:

1. Enhancing interpretability by approaching FWI from a gradient-flow perspective.
2. Improving the predictive accuracy beyond existing baseline models.

3. Improving generalization to unseen data by reducing dependence on training data. However, the
first two objectives will be prioritized.

2 FWI as a gradient flow problem

The inverse problem inherent to FWI can be formulated naturally as a gradient flow problem. Consider
the velocity model u(x) as a function evolving continuously in a pseudo-time variable ¢, denoted as
u(z,t). Then equation (4) can be rewritten in continuous time form as:

Y, T (), (5)

ot
where the functional J(p(u)) can now be seen as the energy functional. This formulation naturally
ensures that the energy J remains positive and decreases monotonically over time, since

W 9,0 =Y, (V) = VI <0
dt ot

By adopting this gradient-flow framework, it becomes possible to address the first challenge in
1.1.4 using well-established numerical techniques that guarantee energy dissipation, such as the Scalar
Auxiliary Variable (SAV) approach [16]. The idea in this context is to utilize the Evolutional Deep
Neural Networks (EDNNs) [17], which explicitly preserves the causal dependencies inherent in time-
dependent PDEs, that cannot be guaranteed using conventional neural network methods.

The core motivation behind EDNNs is to determine whether an operator (the PDE solution) for a
time-dependent PDE can be accurately learned from only initial input functions (initial conditions).
This approach involves parameterizing the initial conditions with a neural network whose parameters
are functions of time that evolve continuously. In contrast to conventional neural network approaches,
EDNNSs enable solution predictions at arbitrary time points and significantly reduce the amount of
data required for training.

Extending this approach, [18] applied the EDNN framework, using a DeepONet architecture, to
gradient-flow problems while incorporating the SAV technique to ensure consistent energy dissipation
over time. This enhancement significantly improves the interpretability of neural operator models.
However, a notable drawback of this approach is scalability. The evolution of parameters in EDNN
requires solving large linear systems involving all network parameters at every iteration—a compu-
tationally prohibitive task, especially for networks with millions of parameters. To mitigate this
computational bottleneck, the multi-evolutional deep neural network [19] has been proposed recently.

Utilizing this approach for FWI from a gradient-flow perspective involves first training a neural
network (baseline model) to map wavefields directly to subsurface velocities. The parameters of this
trained network are then evolved, improving predictions while ensuring continuous energy dissipation.
In this way, the output of a well-trained baseline model serves as an initial condition for the evolutionary
neural network, directly addressing the second research objective of surpassing existing baseline models
in predictive accuracy.

However, an additional critical challenge arises when computing the gradient V,, 7 (p(u)) needed for
the EDNN approach. Notably, this gradient depends explicitly on the velocity u, while the functional
J itself does not directly depend on u. This presents several fundamental questions:

e Can we establish a relationship between J(p(u)) and another functional F(u) that directly
depends on u, ensuring a monotonic decrease in F(u) whenever J(p(u) decreases?



e If such a direct relationship is not feasible, can we circumvent explicit differentiation with respect
to u? One viable strategy is the Adjoint state method, a variational approach. However, this
approach remains computationally expensive, as it requires solving the forward PDE problem
repeatedly at each iteration.

An immediate practical solution to this challenge is employing a machine-learning surrogate for the
forward PDE model (1), enabling rapid gradient extraction via automatic differentiation. Although
machine-learning surrogates greatly reduce computational cost during inference, they are currently
less accurate and less interpretable than traditional numerical PDE solvers, which can induce the
cycle-skipping problem if seismic predictions are not accurate.

3 Conclusion

This project aims to address significant challenges inherent in existing machine learning approaches
for FWI, specifically their lack of interpretability, limited accuracy, and poor generalization to unseen
data. By formulating FWI as a gradient-flow problem, this project aims to enhance interpretability
through the explicit consideration of energy dissipation, using innovative techniques such as the SAV
method and EDNN. Additionally, by evolving the parameters of initially trained baseline models, we
aim to significantly improve prediction accuracy beyond current methodologies. The outcomes of this
project are expected to advance the application of SciML methods in seismic inversion, paving the way
for more robust and interpretable neural-network-driven inversion strategies.
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